Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 206
1.
Medicine (Baltimore) ; 103(19): e38085, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728503

BACKGROUND: Modern medicine has no cure for the xerostomia caused by the early onset of Sjögren's syndrome. Mume Fructus is a common Chinese herbal medicine used to relieve xerostomia. However, the molecular mechanisms of the effects of Mume Fructus are unknown. In this study, network pharmacology and molecular docking were used to investigate the mechanisms of action of Mume Fructus on Sjögren's syndrome. MATERIALS AND METHOD: The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database was used to identify the active components and targets of Mume Fructus, and the UniProt database was used to identify the genes encoding these targets. SS-related targets were also identified from the GeneCards and OMIM databases. By finding the intersection of the targets of the compounds and the targets of Sjögren's syndrome, the predicted targets of Mume Fructus in the treatment of Sjögren's syndrome were obtained. Further investigation of the active compounds and their targets was carried out by constructing a network of "medicine-candidate compound-target-disease" using Cytoscape 3.7.2, the Protein-Protein Interaction network using the STRING database and Cytoscape 3.7.2, and key targets were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on R software. Finally, molecular docking was used to verify the affinity of the candidate compounds to the key targets. RESULTS: Quercetin, beta-sitosterol, and kaempferol in Mume Fructus interact with AKT1, IL-6, IL-1B, JUN, CASP3, and MAPK8. These results suggest that Mume Fructus exerts its therapeutic effects on the peripheral gland injury of Sjögren's syndrome and its secondary cardiovascular disease and tumorigenesis through anti-inflammatory, anti-oxidant, and anti-tumor pathways. CONCLUSION: With network pharmacology, this study systematically identified the main active components, targets, and specific mechanisms of the therapeutic effects of Mume Fructus on Sjögren's syndrome, providing both a theoretical basis and research direction for further investigations on Mume Fructus.


Drugs, Chinese Herbal , Molecular Docking Simulation , Sjogren's Syndrome , Sjogren's Syndrome/drug therapy , Humans , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Cucumis melo , Network Pharmacology , Protein Interaction Maps , Medicine, Chinese Traditional/methods , Kaempferols/pharmacology , Kaempferols/therapeutic use
2.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674061

Chronic inflammation is a significant contributor to the development of cancer, cardiovascular disease, diabetes, obesity, autoimmune disease, inflammatory bowel disease, and other illnesses. In the academic field, there is a constant demand for effective methods to alleviate inflammation. Astragalin (AST), a type of flavonoid glycoside that is the primary component in several widely used traditional Chinese anti-inflammatory medications in clinical practice, has garnered attention from numerous experts and scholars. This article focuses on the anti-inflammatory effects of AST and conducts research on relevant literature from 2003 to 2023. The findings indicate that AST demonstrates promising anti-inflammatory potential in various models of inflammatory diseases. Specifically, AST is believed to possess inhibitory effects on inflammation-related factors and protein levels in various in vitro cell models, such as macrophages, microglia, and epithelial cells. In vivo studies have shown that AST effectively alleviates neuroinflammation and brain damage while also exhibiting potential for treating moderate diseases such as depression and stroke; it also demonstrates significant anti-inflammatory effects on both large and small intestinal epithelial cells. Animal experiments have further demonstrated that AST exerts therapeutic effects on colitis mice. Molecular biology studies have revealed that AST regulates complex signaling networks, including NF-κB, MAPK, JAK/STAT pathways, etc. In conclusion, this review will provide insights and references for the development of AST as an anti-inflammatory agent as well as for related drug development.


Anti-Inflammatory Agents , Kaempferols , Humans , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Kaempferols/pharmacology , Kaempferols/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Signal Transduction/drug effects
3.
Int Immunopharmacol ; 133: 112021, 2024 May 30.
Article En | MEDLINE | ID: mdl-38626549

BACKGROUND: Diabetic retinopathy (DR) stands as a prevalent secondary complication of diabetes, notably Type 1 Diabetes Mellitus (T1D), characterized by immune system involvement potentially impacting the retinal immune response mediated by microglia. Early stages of DR witness blood-retinal barrier permeabilization, facilitating peripheral immune cell interaction with the retinal immune system. Kaempferol (Kae), known for its potent anti-inflammatory activity, presents a promising avenue in DR treatment by targeting the immune mechanisms underlying its onset and progression. Our investigation delves into the molecular intricacies of innate immune cell interaction during DR progression and the attenuation of inflammatory processes pivotal to its pathology. METHODS: Employing in vitro studies, we exposed HAPI microglial and J774.A1 macrophage cells to pro-inflammatory stimuli in the presence or absence of Kae. Ex vivo and in vivo experiments utilized BB rats, a T1D animal model. Retinal explants from BB rats were cultured with Kae, while intraperitoneal Kae injections were administered to BB rats for 15 days. Quantitative PCR, Western blotting, immunofluorescence, and Spectral Domain - Optical Coherence Tomography (SD-OCT) facilitated survival assessment, cellular signaling analysis, and inflammatory marker determination. RESULTS: Results demonstrate Kae significantly mitigates inflammatory processes across in vitro, ex vivo, and in vivo DR models, primarily targeting immune cell responses. Kae administration notably inhibits proinflammatory responses during DR progression while promoting an anti-inflammatory milieu, chiefly through microglia-mediated synthesis of Arginase-1 and Hemeoxygenase-1(HO-1). In vivo, Kae administration effectively preserves retinal integrity amid DR progression. CONCLUSIONS: Our findings elucidate the interplay between retinal and systemic immune cells in DR progression, underscoring a differential treatment response predominantly orchestrated by microglia's anti-inflammatory action. Kae treatment induces a phenotypic and functional shift in immune cells, delaying DR progression, thereby spotlighting microglial cells as a promising therapeutic target in DR management.


Diabetic Retinopathy , Kaempferols , Macrophages , Microglia , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/pathology , Microglia/drug effects , Microglia/immunology , Kaempferols/pharmacology , Kaempferols/therapeutic use , Rats , Macrophages/drug effects , Macrophages/immunology , Mice , Disease Progression , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Retina/drug effects , Retina/pathology , Retina/immunology , Cell Line , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Humans , Immunomodulating Agents/pharmacology , Immunomodulating Agents/therapeutic use , Disease Models, Animal
4.
Exp Gerontol ; 188: 112389, 2024 Apr.
Article En | MEDLINE | ID: mdl-38432575

Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the ß-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.


Kaempferols , Respiratory Distress Syndrome , Humans , Kaempferols/pharmacology , Kaempferols/therapeutic use , Kaempferols/chemistry , Phosphatidylinositol 3-Kinases , Antioxidants/pharmacology , Antioxidants/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Aging , Respiratory Distress Syndrome/drug therapy
5.
Biomed Pharmacother ; 173: 116364, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447449

This study was to investigate the potential mechanisms of treatment with metformin (Met) combined with kaempferol (Kae) against postmenopausal osteoporosis. Experiments were conducted in both ovariectomy (OVX)-induced osteoporosis rats and in vitro using RAW264.7 cells, MC3T3-E1 cells, and HUVECs. Results demonstrated the therapeutic effect of Met combined with Kae on osteoporosis. In vivo, Kae alone and in combination with Met treatments enhanced tibial trabecular microstructure, bone mineral density (BMD), and mechanical properties in OVX rats without causing hepatotoxicity and nephrotoxicity. It also reduced bone resorption markers (CTX-1 and TRAP) and increased the bone formation marker (PINP) level in the serum of OVX rats. The expression of bone resorption marker TRAP was reduced, while bone formation markers Runx2 and ALP were enhanced in the bone tissue of OVX rats. Furthermore, Met combined with Kae also promoted the expression of angiogenesis-related markers CD31 and VEGF in OVX rats. In vitro, MC3T3-E1s cells treated with Met combined with Kae showed higher expression of ALP, Runx2, and VEGF. Interestingly, the treatment did not directly promote HUVECs migration and angiogenesis, but enhanced osteoblast-mediated angiogenesis by upregulating VEGF levels. Additionally, Met combined with Kae treatment promoted VEGF secretion in MC3T3-E1, and activated the Notch intracelluar pathway by upregulating HES1 and HEY1 in HUVECs. Meantime, their stimulation on CD31 expression were inhibited by DAPT, a Notch signaling inhibitor. Overall, this study demonstrates the positive effects of Met combined with Kae on osteoporotic rats by promoting osteogenesis-angiogenesis coupling, suggesting their potential application in postmenopausal osteoporosis.


Bone Resorption , Osteoporosis, Postmenopausal , Osteoporosis , Female , Humans , Rats , Animals , Osteogenesis , Osteoporosis, Postmenopausal/drug therapy , Core Binding Factor Alpha 1 Subunit , Vascular Endothelial Growth Factor A/pharmacology , Kaempferols/pharmacology , Kaempferols/therapeutic use , Angiogenesis , Bone and Bones/metabolism , Osteoporosis/drug therapy , Osteoporosis/prevention & control , Osteoporosis/metabolism , Bone Resorption/drug therapy , Ovariectomy
6.
Cell Biochem Funct ; 42(2): e3964, 2024 Mar.
Article En | MEDLINE | ID: mdl-38439154

Kaempferol, a flavonoid compound found in various fruits, vegetables, and medicinal plants, has garnered increasing attention due to its potential neuroprotective effects in neurological diseases. This research examines the existing literature concerning the involvement of kaempferol in neurological diseases, including stroke, Parkinson's disease, Alzheimer's disease, neuroblastoma/glioblastoma, spinal cord injury, neuropathic pain, and epilepsy. Numerous in vitro and in vivo investigations have illustrated that kaempferol possesses antioxidant, anti-inflammatory, and antiapoptotic properties, contributing to its neuroprotective effects. Kaempferol has been shown to modulate key signaling pathways involved in neurodegeneration and neuroinflammation, such as the PI3K/Akt, MAPK/ERK, and NF-κB pathways. Moreover, kaempferol exhibits potential therapeutic benefits by enhancing neuronal survival, attenuating oxidative stress, enhancing mitochondrial calcium channel activity, reducing neuroinflammation, promoting neurogenesis, and improving cognitive function. The evidence suggests that kaempferol holds promise as a natural compound for the prevention and treatment of neurological diseases. Further research is warranted to elucidate the underlying mechanisms of action, optimize dosage regimens, and evaluate the safety and efficacy of this intervention in human clinical trials, thereby contributing to the advancement of scientific knowledge in this field.


Nervous System Diseases , Neuroprotective Agents , Humans , Neuroprotection , Neuroinflammatory Diseases , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Kaempferols/pharmacology , Kaempferols/therapeutic use , Phosphatidylinositol 3-Kinases , Nervous System Diseases/drug therapy
7.
J Ethnopharmacol ; 325: 117845, 2024 May 10.
Article En | MEDLINE | ID: mdl-38307355

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Kaempferia galanga L., a medicinal and edible Plant, was widely distributed in many Asian and African counties. It has been traditionally used to treat gastroenteritis, hypertension, rheumatism and asthma. However, there is a lack of modern pharmacology studies regarding its anti-gastric ulcer activity. AIM OF THE STUDY: The objective of this study is to investigate the protective effects of an extract from K. galanga L. rhizome (Kge) and its active components kaempferol and luteolin on ethanol-induced gastric ulcer. MATERIALS AND METHODS: The kge was prepared by ultrasonic-assisted extraction, and the contents of kaempferol and luteolin were determined by HPLC. The mice were randomly divided into seven groups: blank control (0.5 % CMC-Na; 0.1 mL/10 g), untreatment (0.5 % CMC-Na; 0.1 mL/10 g), Kge (100, 200 and 400 mg/kg), kaempferol (100 mg/kg) and luteolin (100 mg/kg) groups. The mice were treated intragastrically once daily for 7 days. At 1 h post the last administration, the mice in all groups except the blank control group were intragastrically administrated with anhydrous alcohol (0.1 mL/10 g) once to induce gastric ulcer. Then, fasting was continued for 1 h, followed by sample collection for evaluation by enzyme-linked immunosorbent assay and real-time reverse transcription polymerase chain reaction assay. RESULTS: The contents of kaempferol and luteolin in Kge were determined as 3713 µg/g and 2510 µg/g, respectively. Alcohol induced severely damages with edema, inflammatory cell infiltration and bleeding, and the ulcer index was 17.63 %. After pre-treatment with Kge (100, 200 and 400 mg/kg), kaempferol and luteolin, the pathological lesions were obviously alleviated and ulcer indices were reduced to 13.42 %, 11.65 %, 6.54 %, 3.58 % and 3.85 %, respectively. In untreated group, the contents of Ca2+, myeloperoxidase, malondialdehyde, NO, cyclic adenosine monophosphate and histamine were significantly increased, while the contents of hexosamine, superoxide dismutase, glutathione peroxidase, and prostaglandin E2 were significantly decreased; the transcriptional levels of IL-1α, IL-1ß, IL-6, calcitonin gene related peptide, substance P, M3 muscarinic acetylcholine receptor, histamine H2 receptor, cholecystokinin 2 receptor and H+/K+ ATPase were significantly increased when compared with the blank control group. After pre-treatment, all of these changes were alleviated, even returned to normal levels. Kge exhibited anti-gastric ulcer activity and the high dose of Kge (400 mg/kg) exhibited comparable activity to that of kaempferol and luteolin. CONCLUSION: The study showed that K. galanga L., kaempferol, and luteolin have protective effects against ethanol-induced gastric ulcers. This is achieved by regulating the mucosal barrier, oxidative stress, and gastric regulatory mediators, as well as inhibiting the TRPV1 signaling pathway and gastric acid secretion, ultimately reducing the gastric ulcer index.


Alpinia , Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Stomach Ulcer/prevention & control , Ethanol/toxicity , Kaempferols/pharmacology , Kaempferols/therapeutic use , Rhizome/metabolism , Ulcer/drug therapy , Luteolin/pharmacology , Histamine/metabolism , Gastric Mucosa , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism
8.
J Ethnopharmacol ; 324: 117781, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38253278

ETHNOPHARMACOLOGICAL RELEVANCE: The application of Cortex Mori (CM) in the treatment of diabetes mellitus (DM) has been extensively documented in traditional medicine. In recent years, the chemical composition of CM has been gradually unraveled, and its therapeutic mechanism in treating DM, diabetic nephropathy, diabetic cardiomyopathy, and other related conditions has been highlighted in successive reports. However, there is no systematic study on the treatment of DM based on the chemical composition of CM. AIM OF THE STUDY: This study was conducted to systematically explore the hypoglycemic activity mechanism of CM based on its chemical composition. METHODS: The material basis of Cortex Mori extract (CME) was investigated through qualitative analyses based on liquid chromatography-mass spectrometry (LC-MS). The possible acting mechanism was simulated using network pharmacology and validated in streptozotocin (STZ) + high fat diet (HFD)-induced diabetic rats and glucosamine-induced IR-HepG2 model with the assistance of molecular docking techniques. RESULTS: A total of 39 compounds were identified in CME by the LC-MS-based qualitative analysis. In diabetic rats, it was demonstrated that CME significantly ameliorated insulin resistance, blood lipid levels, and liver injury. The network pharmacology analysis predicted five major targets, including AKT1, PI3K, FoxO1, Gsk-3ß, and PPARγ. Additionally, three key compounds (resveratrol, protocatechuic acid, and kaempferol) were selected based on their predicted contributions. The experimental results revealed that CME, resveratrol, protocatechuic acid, and kaempferol could promote the expression of AKT1, PI3K, and PPARγ, while inhibiting the expression of FoxO1 and Gsk-3ß. The molecular docking results indicated a strong binding affinity between resveratrol/kaempferol and their respective targets. CONCLUSIONS: CME contains a substantial amount of prenylated flavonoids, which may be the focal point of research on the efficacy of CM in the treatment of DM. Besides, CME is effective in controlling blood glucose and insulin resistance, improving lipid levels, and mitigating liver injury in patients with DM. Relevant mechanisms may be associated with the activation of the PI3K/Akt pathway, the inhibition of the expression of FoxO1 and Gsk-3ß, and the enhancement of PPARγ activity. This study represents the first report on the role of CME in the treatment of DM through regulating PPARγ, FoxO1, and Gsk-3ß.


Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Hydroxybenzoates , Insulin Resistance , Rats , Humans , Animals , Glycogen Synthase Kinase 3 beta , Kaempferols/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Molecular Docking Simulation , Resveratrol , Phosphatidylinositol 3-Kinases/metabolism , PPAR gamma , Lipids/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Drugs, Chinese Herbal/pharmacology
9.
Medicine (Baltimore) ; 103(2): e36220, 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38215128

This study aims to investigate the mechanism of Taohong Siwu Decoction (THSWD) against deep vein thrombosis (DVT) using network pharmacology and molecular docking technology. We used the Traditional Chinese Medicine Systems Pharmacology database and reviewed literature to identify the main chemical components of THSWD. To find targets for DVT, we consulted GeneCards, Therapeutic Target Database, and PharmGKB databases. We used Cytoscape 3.8.2 software to construct herb-disease-gene-target networks. Additionally, we integrated drug targets and disease targets on the STRING platform to create a protein-protein interaction network. Then, we conducted Kyoto Encyclopedia of Genes and Genomes and gene ontology analysis. Finally, We employed the molecular docking method to validate our findings. We identified 56 potential targets associated with DVT and found 61 effective components. beta-sitosterol, quercetin, and kaempferol were the most prominent among these components. Our analysis of the protein-protein interaction network revealed that IL6, L1B, and AKT1 had the highest degree of association. Gene ontology analysis showed that THSWD treatment for DVT may involve response to inorganic substances, negative regulation of cell differentiation, plasma membrane protein complex, positive regulation of phosphorylation, and signaling receptor regulator activity. Kyoto Encyclopedia of Genes and Genomes analysis indicated that lipid and atherosclerosis, pathways in cancer, as well as the PI3K-Akt pathway are the main signal pathways involved. Molecular docking results demonstrated strong binding affinity between beta-sitosterol, quercetin, kaempferol, and AKT1 proteins as well as IL1B and IL6 proteins. The main targets for THSWD treatment of DVT may include AKT1, IL1B, and IL6. Beta-sitosterol, quercetin, and kaempferol may be the active ingredients responsible for producing this effect. These compounds may slow down the progression of DVT by regulating the inflammatory response through the PI3K/Akt pathway.


Drugs, Chinese Herbal , Venous Thrombosis , Humans , Kaempferols/pharmacology , Kaempferols/therapeutic use , Network Pharmacology , Interleukin-6 , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Quercetin , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Venous Thrombosis/drug therapy
10.
Chem Biol Drug Des ; 103(1): e14385, 2024 01.
Article En | MEDLINE | ID: mdl-37914430

Kaempferol is the active ingredient of Er-Xian decoction (EXD), a traditional Chinese medicine formula used clinically to treat ovarian dysfunction, but the mechanism of kaempferol relieving age-related diminished ovarian reserve (AR-DOR) is still unclear. In this study, 36 volunteers and 78 DOR patients (37 patients with EXD treatment) were enrolled in the clinical research. Meanwhile, 32-week-old female mice were used to establish the AR-DOR model, and these model mice were intragastrically administered with 100 mg/kg kaempferol in the presence or absence of 200 mg/kg geranylgeranylacetone (GGA) or 1 mg/kg geldanamycin (GDA). The effects of kaempferol on serum hormone levels and oxidative stress-related indexes were detected by enzyme-linked immunosorbent assay. Antral follicle count (AFC) was determined by hematoxylin-eosin staining. The protein levels of HSP90 and nuclear factor erythroid 2-related factor 2 (NRF2) were assayed by Western blot. This study displayed that the serum anti-Mullerian hormone (AMH) level in DOR patients with EXD treatment was higher than that in DOR patients without EXD treatment. Kaempferol treatment reversed the low levels of AMH, estradiol (E2), AFC, superoxide dismutase (SOD), and catalase (CAT), as well as the high levels of follicle-stimulating hormone (FSH), reactive oxygen species (ROS), and malonaldehyde (MDA). The results showed that HSP90 was predicted to have high affinity with kaempferol, and its expression was inhibited by kaempferol, while the expression of NRF2, the target of HSP90, was up-regulated by kaempferol. However, the above effects of kaempferol were reversed by GGA. On the contrary, GDA enhanced the therapeutic effects of kaempferol on AR-DOR mice. Moreover, the treatment of kaempferol resulted in a reduction in the phosphorylation level of heat shock factor 1 (HSF1), the transcription factor associated with HSP90, and an increase in the phosphorylation level of Src, a client protein of HSP90. In summary, kaempferol exerts an antioxidant effect on AR-DOR by inhibiting HSP90 expression to up-regulate NRF2 expression. This study provides a theoretical basis for the clinical application of kaempferol in AR-DOR.


Antioxidants , Disulfides , Ovarian Reserve , Thiones , Female , Humans , Animals , Mice , Antioxidants/pharmacology , Antioxidants/therapeutic use , NF-E2-Related Factor 2 , Ovarian Reserve/physiology , Kaempferols/pharmacology , Kaempferols/therapeutic use
11.
J Ethnopharmacol ; 321: 117510, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38030023

ETHNOPHARMACOLOGICAL RELEVANCE: In China, Capparis spinosa L. fruits (CSF) are often used topically in Uyghur folk medicine in treating rheumatic diseases with remarkable efficacy. However, it has noticed severe skin irritation after a short time application with high dose of CSF, which limited long-term clinical use. To date, there is almost no research related to skin irritation of CSF. AIM OF THE STUDY: This study was intended to perform the first systematic assessment of morphological and histological changes in skin after stimulation with CSF. Furthermore, potential irritant components in CSF and related mechanisms were explored by in vitro transdermal techniques, network pharmacology, molecular docking, and experimental validation. MATERIALS AND METHODS: Skin changes after single and multiple stimulations with CSF were observed and subjected to skin irritation response scoring, irritation strength assessment, and histopathological analysis. In addition, in vitro transdermal technology, liquid chromatography-mass spectrometry (LC-MS) method, network pharmacology, molecular docking, and experimental validation were used to further exploit underlying skin irritant components and possible mechanisms of action. RESULTS: CSF induced significant morphological (erythema and edema) and histological (epidermal thickening and inflammatory infiltration) changes in skin of mice, which were similar to the clinical presentation of irritation contact dermatitis (ICD). The ethyl acetate fraction of CSF (CFEAF) was the main source of CSF-induced skin irritation. Kaempferol, flazin, and gallic acid were potential major irritant compounds. Moreover, CFEAF, kaempferol, flazin, and gallic acid could increase the levels of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), intercellular adhesion molecule-1 (ICAM-1), and interleukin-17A (IL-17A) to promote skin inflammation. The potential mechanism of CSF-induced skin irritation may be activation of the nuclear factor kappa-B (NF-κB) signaling pathway, including phosphorylation of NF-κB p65 (p65) and nuclear factor-kappa B inhibitor alpha (IκBα). CONCLUSION: Kaempferol, flazin, and gallic acid are potential skin irritant components from CSF. Altogether, they induce skin irritation responses through promoting the release of the inflammatory factors TNF-α and ICAM-1, as well as activating the NF-κB signaling pathway. In addition, IL-17A may be an important pro-inflammatory factor in skin irritation.


Capparis , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Intercellular Adhesion Molecule-1 , Interleukin-17 , Kaempferols/therapeutic use , Tumor Necrosis Factor-alpha/pharmacology , Irritants/toxicity , Fruit/metabolism , Molecular Docking Simulation , Inflammation/drug therapy , Gallic Acid/therapeutic use
12.
J Nat Med ; 78(2): 312-327, 2024 Mar.
Article En | MEDLINE | ID: mdl-38143256

Our previous study demonstrated neuroprotective and therapeutic effects of a standardized flavonoid extract from leaves of Diospyros kaki L.f. (DK) on middle cerebral artery occlusion-and-reperfusion (MCAO/R)-induced brain injury and its underlying mechanisms. This study aimed to clarify flavonoid components responsible for the effects of DK using in vitro and in vivo transient brain ischemic models. Organotypic hippocampal slice cultures (OHSCs) subjected to oxygen- and glucose-deprivation (OGD) were performed to evaluate in vitro neuroprotective activity of DK extract and nine isolated flavonoid components. MCAO/R mice were employed to elucidate in vivo neuroprotective effects of the flavonoid component that exhibited the most potent neuroprotective effect in OHSCs. DK extract and seven flavonoids [quercetin, isoquercetin, hyperoside, quercetin-3-O-(2″-O-galloyl-ß-D-galactopyranoside), kaempferol, astragalin, and kaempferol-3-O-(2″-O-galloyl-ß-D-glucopyranoside) compound (9)] attenuated OGD-induced neuronal cell damage and compound (9) possessed the most potent neuroprotective activity in OHSCs. The MCAO/R mice showed cerebral infarction, massive weight loss, characteristic neurological symptoms, and deterioration of neuronal cells in the brain. Compound (9) and a reference drugs, edaravone, significantly attenuated these physical and neurological impairments. Compound (9) mitigated the blood-brain barrier dysfunction and the change of glutathione and malondialdehyde content in the MCAO mouse brain. Edaravone suppressed the oxidative stress but did not significantly affect the blood-brain barrier permeability. The present results indicated that compound (9) is a flavonoid constituent of DK with a potent neuroprotective activity against transient ischemia-induced brain damage and this action, at least in part, via preservation of blood-brain barrier integrity and suppression of oxidative stress caused by ischemic insult.


Brain Injuries , Brain Ischemia , Diospyros , Neuroprotective Agents , Reperfusion Injury , Mice , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Edaravone/therapeutic use , Kaempferols/pharmacology , Kaempferols/therapeutic use , Brain Ischemia/drug therapy , Cerebral Infarction/drug therapy , Flavonoids/pharmacology , Reperfusion Injury/drug therapy , Oxygen , Brain Injuries/drug therapy
13.
J Nutr Biochem ; 125: 109556, 2024 Mar.
Article En | MEDLINE | ID: mdl-38151193

Kaempferol (Kam) is a flavonoid antioxidant found in fruits and vegetables, which was discovered as neuroprotective antioxidants. Lead (Pb), an environmental pollution, could induce learning and memory deficits. Nevertheless, little is known about the mechanisms underlying Kam actions in Pb-induced learning and memory deficits. In this study, we investigated the effects of Kam on Pb-induced cognitive deficits. Pb-exposed rats were treated with 50 mg/kg Kam from postnatal day (PND) 30 to PND 60. Then, Y-maze and Morris water maze have been used to detect the spatial memory in all groups of rats. Hematoxylin and eosin (HE) staining and Nissl staining were used to analyze the neuronal structure damages. The results found Kam treatment improved the learning and memory ability and alleviated hippocampal neuronal pathological damages. Besides, Kam could significantly reverse the synaptic transmission related protein expression including PSD95 and NMDAR2B. Further research found that Kam downregulated autophagy markers, P62, ATG5, Beclin1, and LC3-II. Furthermore, 3-MA, autophagy inhibitor, increased the levels of NMDAR2B and PSD95 in Pb-induced PC12 cells, indicating Kam alleviated Pb-induced neurotoxicity through inhibiting autophagy activation. Our results showed that Kam could ameliorate Pb-induced cognitive impairments and neuronal damages by decreasing Pb-induced excess autophagy accumulation.


Cognitive Dysfunction , Lead , Rats , Animals , Lead/toxicity , Maze Learning , Kaempferols/pharmacology , Kaempferols/therapeutic use , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Memory Disorders/chemically induced , Antioxidants/pharmacology , Autophagy
14.
Int Immunopharmacol ; 125(Pt B): 111174, 2023 Dec.
Article En | MEDLINE | ID: mdl-37951194

BACKGROUND: Generalized vitiligo (GV) is an autoimmune disease characterized by the progressive loss of melanocytes. OBJECTIVES: Current study was undertaken to assess in-vitro therapeutic potential of Harmine and Kaempferol for GV. METHODS: Calcium, calcineurin, NFATC1 levels, cell proliferation were assessed by various kits and ORAI1, PEIZO1, Calcineurin, GSK3B, DYRK1A transcripts and IFN-γ,IL-10,TGF-ß protein levels were assessed by qPCR and ELISA in blood and skin biopsy samples from Tregs of 52 patients and 50 controls. RESULTS: Harmine and Kaempferol treatment enhances Treg suppressive capacity, NFATs and FOXP3 expression in blood and skin Tregs of GV patients (p < 0.05). Furthermore, Harmine and Kaempferol treatment in Tregs increased calcineurin and NFATC1 activity and decreased DYRK1A transcripts in blood and skin Tregs of GV patients(p < 0.05). In-silico analysis revealed that Harmine and Kaempferol might boost Treg suppressive capacity by increasing calcineurin dephosphorylation activity leading to increase NFATs activation and also increase nuclear retention of NFATs by inhibiting DYRK1a phosphorylation activity. Moreover, calcineurin and NFATC1 activity in Tregs were positively correlated with Treg suppressive capacity, NFATC1 and FOXP3 expression (p < 0.05), whereas, DYRK1A transcripts were negatively correlated with Treg suppressive capacity, NFATC1 and FOXP3 expression (p < 0.05). These compounds significantly increased melanocytes' survival and proliferation in Treg:CD4+/CD8+:SK-Mel-28 cell line co-culture system from GV patients (p < 0.0001). CONCLUSIONS: For the first time the study suggests that Harmine and Kaempferol treated Tregs could control the CD8+ and CD4+T-cells' proliferation and IFN-γ production, leading to melanocytes' survival and proliferation. These compounds may serve as novel Treg-based therapeutics for GV; however, in vivo studies are warranted to assess the safety and efficacy of these compounds.


Vitiligo , Humans , Vitiligo/drug therapy , Harmine/pharmacology , Harmine/therapeutic use , T-Lymphocytes, Regulatory , Calcineurin , Kaempferols/pharmacology , Kaempferols/therapeutic use , Forkhead Transcription Factors/genetics , NFATC Transcription Factors/genetics
15.
Medicine (Baltimore) ; 102(46): e35986, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37986339

Xiaotan Sanjie Formula (XTSJF), a traditional Chinese prescription, holds promising potential in addressing gastric cancer (GC). Despite this, the fundamental constituents and underlying mechanisms that define XTSJF's attributes remain enigmatic. Against this backdrop, this study endeavors to unravel the latent mechanisms driving XTSJF's impact on GC, leveraging the synergistic prowess of network pharmacology and molecular docking methodologies. To understand the potential mechanism of XTSJF against GC, this study used network pharmacology, molecular docking, and bioinformatics analytic methodologies. There are 135 active components where the active ingredients with a higher degree value are quercetin, ß-sitosterol, naringenin, nobiletin, and kaempferol and 167 intersecting targets in which TP53, MAPK3, MAPK1, STAT3, and AKT1 were key targets were identified in XTSJF in the treatment of GC. According to GO and KEGG analyses, XTSJF is mostly involved in the positive control of transcription from the RNA polymerase II promoter, enzyme interaction, and other biological processes in GC. KEGG analysis shows that XTSJF treated GC primarily by regulating signaling pathways including the TNF, PI3K-Akt, and MAPK signaling pathways. According to the results of the PPI network and molecular docking, quercetin, ß-sitosterol, naringenin, nobiletin, and kaempferol exhibit stronger affinity with TP53, MAPK3, MAPK1, STAT3, and AKT1. This study indicates the active components of XTSJF as well as its possible molecular mechanism against GC, and it serves as a foundation for future fundamental research.


Drugs, Chinese Herbal , Stomach Neoplasms , Humans , Network Pharmacology , Stomach Neoplasms/drug therapy , Kaempferols/pharmacology , Kaempferols/therapeutic use , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Quercetin/pharmacology , Quercetin/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
16.
Toxicol Appl Pharmacol ; 480: 116742, 2023 12 01.
Article En | MEDLINE | ID: mdl-37923178

Acute hypobaric hypoxia at high altitude can cause fatal non-cardiogenic high altitude pulmonary edema. Anti-inflammatory and anti-oxidant treatments appear to be a prospective way to alleviate acute hypoxia lung injury. Kaempferol (KA) and ginsenoside Rg1 (GRg1) can be isolated and purified from ginseng with anti-inflammatory, antioxidant, anti-carcinogenic, neuroprotective, and antiaging effects. However, their effects and pharmacological mechanisms on lung injury remains unclear. Network pharmacology analyses were used to explore potential targets of KA and GRg1 against acute hypobaric hypoxia induced lung injury. Rat lung tissues were further used for animal experiment verification. Among the putative targets of KA and GRg1 for inhibition of acute hypobaric hypoxia induced lung injury, AKT1, PIK3R1, PTK2, STAT3, HSP90AA1 and AKT2 were recognized as higher interrelated targets. And PI3K-AKT signaling pathway is considered to be the most important and relevant pathway. The rat experimental results showed that KA and GRg1 significantly improved histopathological changes and decreased pulmonary edema in rats with lung injury caused by acute hypobaric hypoxia. The concentrations of IL-6, TNF-α, MDA, SOD and CAT in rats treated with KA and GRg1 were significantly ameliorated. Protein and mRNA levels of PI3K and AKTI were significantly inhibited after KA administration. KA and GRg1 can lower lung water content, improve lung tissue damage, reduce the production of pro-inflammatory cytokines and the oxidative stress level.


Acute Lung Injury , Pulmonary Edema , Rats , Animals , Pulmonary Edema/drug therapy , Pulmonary Edema/prevention & control , Phosphatidylinositol 3-Kinases/metabolism , Kaempferols/pharmacology , Kaempferols/therapeutic use , Network Pharmacology , Hypoxia/complications , Hypoxia/drug therapy , Antioxidants , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents
17.
Exp Cell Res ; 433(2): 113849, 2023 12 15.
Article En | MEDLINE | ID: mdl-37926343

Estrogens have been demonstrated to inhibit age-related cognitive decline via binding to estrogen receptors (ERs). As a natural flavonoid component of Cuscuta Chinensis Lam., Kaempferol-3-O-glucoside (K-3-G) not only possesses anti-neuroinflammatory potential but also functions as an agonist for ERα and ERß. This study aimed to determine whether K-3-G improved cognition during the aging process, with an emphasis on its effect on microglial inflammation. In vivo, K-3-G (5 or 10 mg/kg/day) was orally given to the senescence-accelerated mouse prone 8 (SAMP8) mice from six to eight-month old. In addition to mitigating the memory and learning deficits of SAMP8 mice, K-3-G upregulated the expression of ERα and ERß in their hippocampal CA1 region, with the higher dose being more effective. Less Iba-1+ microglial cells presented in SAMP8 mice treated with K-3-G. The formation of NLR Family Pyrin Domain Containing 3 (NLRP3) complex, production of pro-inflammatory cytokines and oxidative stress-related markers, as well as expression of pro-apoptotic proteins were reduced by K-3-G. In vitro, BV2 microglial cells exposed to oligomeric amyloid beta (Aß)1-42 were treated with 100 µM K-3-G. K-3-G showed similar anti-inflammatory effects on BV2 cells as in vivo. K-3-G-induced alterations were partly diminished by fulvestrant, an ER antagonist. Moreover, dual-luciferase reporter system demonstrated that K-3-G induced ER expression by activating the transcription of estrogen-response elements (EREs). Collectively, these findings demonstrate that K-3-G may be a novel therapeutic agent for senescence-related cognitive impairment by inhibiting microglial inflammation through its action on ERs.


Aging , Anti-Inflammatory Agents, Non-Steroidal , Cognitive Dysfunction , Estrogen Receptor alpha , Estrogen Receptor beta , Kaempferols , Monosaccharides , Receptors, Estrogen , Animals , Mice , Amyloid beta-Peptides/metabolism , Cognition , Cognitive Dysfunction/drug therapy , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Microglia/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/therapeutic use , Monosaccharides/pharmacology , Monosaccharides/therapeutic use , Kaempferols/pharmacology , Kaempferols/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
18.
Int J Mol Sci ; 24(19)2023 Sep 25.
Article En | MEDLINE | ID: mdl-37833967

Docetaxel is a first-line chemotherapy drug used to treat advanced prostate cancer, but patients who have used it often face the challenges of drug resistance and side effects. Kaempferol is a naturally occurring flavonol; our previous studies have confirmed that it has excellent anti-prostate activity. To investigate the anti-prostate cancer effects of docetaxel in combination with kaempferol, we conducted experiments at the cellular and whole-animal level. Plate cloning assays showed that the combination of docetaxel and kaempferol had a synergistic effect in inhibiting the proliferation of prostate cancer cells. The combination of these two compounds was found to induce autophagy in prostate cancer cells via transmission electron microscopy, and changes in the expression of autophagy-related proteins via Western blot assays also confirmed the occurrence of autophagy at the molecular level. We also confirmed the anti-prostate cancer effect of docetaxel in combination with kaempferol in vivo by establishing a mouse xenograft prostate cancer model. Autophagy-related proteins were also examined in mouse tumor tissues and verified the presence of autophagy in mouse tumor tissues. The above cellular and animal data suggest that docetaxel in combination with kaempferol has significant anti-prostate cancer effects and that it works by inducing autophagy in cells.


Kaempferols , Prostatic Neoplasms , Male , Humans , Animals , Mice , Docetaxel/pharmacology , Docetaxel/therapeutic use , Kaempferols/pharmacology , Kaempferols/therapeutic use , Taxoids/pharmacology , Taxoids/therapeutic use , Prostatic Neoplasms/metabolism , Autophagy , Autophagy-Related Proteins , Cell Line, Tumor , Xenograft Model Antitumor Assays , Apoptosis
19.
Eur J Pharmacol ; 960: 176112, 2023 Dec 05.
Article En | MEDLINE | ID: mdl-37879426

Kaempferol is a natural flavonoid compound that exhibits various pharmacological actions. However, there are few reports regarding the role of kaempferol in cardiovascular abnormalities. This study aimed to assess whether kaempferol could prevent cardiovascular malfunction and hypertrophy provoked by chronic inhibition of nitric oxide (NO) formation in rats. Rats (180-200 g) were treated daily with Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) (40 mg/kg, in drinking water) for five weeks concomitant with kaempferol (oral administration) at a dose of 20 mg/kg or 40 mg/kg or lisinopril (5 mg/kg). Kaempferol partially prevented the progression of hypertension provoked by NO inhibition (p < 0.05). Left ventricular malfunction and hypertrophy present in hypertensive rats were alleviated by concurrent administration of kaempferol (p < 0.05). Furthermore, L-NAME rats had increased sympathetic nerve-mediated vasoconstriction and decreased acetylcholine-induced vasorelaxation and aortic wall thickening, which were resolved by kaempferol treatment (p < 0.05). Kaempferol restored tissue superoxide formation, malondialdehyde, catalase activity, plasma nitric oxide metabolites, tumor necrosis factor-alpha (TNF-α) and interleukin-6 in L-NAME rats (p < 0.05). Overexpression of tumor necrosis factor receptor 2 (TNFR2), phosphatidylinositol 3-kinases (PI3K), AKT serine/threonine kinase 1 (Akt1) and smad2/3 in heart tissue and upregulation of tumor necrosis factor receptor 1 (TNFR1), phosphorylated nuclear factor-kappaB (p-NF-κB) and transforming growth factor beta 1 (TGF-ß1) in vascular tissue were suppressed by kaempferol (p < 0.05). In conclusion, kaempferol exerts antihypertensive, cardioprotective, antioxidant, and anti-inflammatory effects in NO-dependent hypertensive rats. The underlying mechanisms of kaempferol in preventing cardiovascular changes induced by L-NAME were due to the suppression of the TNF-α pathway.


Cardiovascular Abnormalities , Hypertension , Rats , Animals , Nitric Oxide/metabolism , Tumor Necrosis Factor-alpha/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Kaempferols/pharmacology , Kaempferols/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Antioxidants/pharmacology , Aorta/metabolism , Hypertrophy/metabolism , Cardiovascular Abnormalities/complications , Cardiovascular Abnormalities/metabolism , Blood Pressure
20.
Curr Pharm Des ; 29(20): 1547-1556, 2023.
Article En | MEDLINE | ID: mdl-37537778

Obesity is considered as a chronic and high-prevalence disease on a global scale which affects all genders and ages. Although various drugs have been confirmed for the treatment of obesity, these medications have been shown to have a number of adverse effects on health. It is highlighted that natural products have an alleviative role in a broad spectrum of diseases, in particular obesity, and diabetes. Kaempferol (KMP), a plant- derived flavonol, is considerably engaged in the suppression of oxidative stress, radical scavenging, opposing cellular toxicity, and induction of the production and release of growth factors. This flavonol combats obesity by suppressing adipogenesis, regulating lipid and glucose metabolism, changing gut microbiota, and activating autophagy. Also, studies have shown that KMP exerts its anti-obesity actions by decreasing the accumulation of lipids and triglycerides (TGs), increasing fatty acid oxidation, and regulating multiple metabolic genes in the adipocytes. Considering that KMP may be a potential candidate for combating obesity, this paper summarizes the possible therapeutic roles of KMP in the treatment and prevention of this disease.


Kaempferols , Obesity , Humans , Female , Male , Animals , Mice , Kaempferols/pharmacology , Kaempferols/metabolism , Kaempferols/therapeutic use , Obesity/metabolism , Lipid Metabolism , Adipocytes/metabolism , Adipogenesis/genetics , Diet, High-Fat , Mice, Inbred C57BL
...